Idris Tutorial Series
Release 0.10.2

The Idris Community

March 19, 2016

Contents

1 Type Providers in Idris 3

2 The Interactive Theorem Prover 7

Idris Tutorial Series, Release 0.10.2

Tutorials submitted by community members.

Note: The documentation for Idris has been published under the Creative Commons CCQ License. As such to
the extent possible under law, The Idris Community has waived all copyright and related or neighboring rights to
Documentation for Idris.

More information concerning the CCO can be found online at: http://creativecommons.org/publicdomain/zero/1.0/

Contents 1

http://creativecommons.org/publicdomain/zero/1.0/

Idris Tutorial Series, Release 0.10.2

2 Contents

CHAPTER 1

Type Providers in Idris

Type providers in Idris are simple enough, but there are a few caveats to using them that it would be worthwhile to
go through the basic steps. We also go over foreign functions, because these will often be used with type providers.

1.1 The use case

First, let’s talk about why we might want type providers. There are a number of reasons to use them and there
are other examples available around the net, but in this tutorial we’ll be using them to port C’s struct stat to
Idris.

Why do we need type providers? Well, Idris’s FFI needs to know the types of the things it passes to and from C,
but the fields of a struct stat are implementation-dependent types that cannot be relied upon. We don’t just
want to hard-code these types into our program... so we’ll use a type provider to find them at compile time!

1.2 A simple example

First, let’s go over a basic usage of type providers, because foreign functions can be confusing but it’s important
to remember that providers themselves are simple.

A type provider is simply an IO action that returns a value of this type:

data Provider a = Provide a | Error String

Looks familiar? Providerisjust Either a String, given a slightly more descriptive name.

Remember though, type providers we use in our program must be IO actions. Let’s write a simple one now:

module Provider
—— Asks nicely for the user to supply the size of C's size t type on this
—-— machine
getSizeT : IO (Provider Int)
getSizeT = do
putStrln "I'm sorry, I don't know how big size_t is. Can you tell me, in bytes?"
resp <—- getLine
case readInt resp of
Just sizeTSize => return (Provide sizeTSize)
Nothing => return (Error "I'm sorry, I don't understand.")
—-— the readInt function is left as an exercise

We assume that whoever’s compiling the library knows the size of size_t, so we’ll just ask them! (Don’t
worry, we’ll get it ourselves later.) Then, if their response can be converted to an integer, we present Provide
sizeTSize asthe result of our IO action; or if it can’t, we signal a failure. (This will then become a compile-time
error.)

Now we can use this IO action as a type provider:

http://www.itu.dk/people/drc/pubs/dependent-type-providers.pdf

Idris Tutorial Series, Release 0.10.2

module Main
-— to gain access to the IO action we're using as a provider
import Provider

—-— TypeProviders 1is an extension, so we'll enable it
%$language TypeProviders

—-— And finally, use the provider!
—— Note that the parentheses are mandatory.
$provide (sizeTSize : Int) with getSizeT

—-— From now on it's just a normal program where ‘sizeTSize' 1is available
—-— as a top-level constant
main : IO ()
main = do
putStr "Look! I figured out how big size_t is! It's
putStr (show sizeTSize)
putsStr " bytes!”

Yay! We... asked the user something at compile time? That’s not very good, actually. Our library is going to be
difficult to compile! This is hardly a step up from having them edit in the size of size_t themselves!

Don’t worry, there’s a better way.

1.3 Foreign Functions

It’s actually pretty easy to write a C function that figures out the size of size_t:

‘int sizeof_size_t () { return sizeof(size_t); }

(Why an int and not a size_t? The FFI needs to know how to receive the return value of this function and
translate it into an Idris value. If we knew how to do this for values of C type size_t, we wouldn’t need to write
this function at all! If we really wanted to be safe from overflow, we could use an array of multiple integers, but
the SIZE of size_t is never going to be a 65535 byte integer.)

So now we can get the size of size_t aslong as we’re in C code. We’d like to be able to use this from Idris. Can
we do this? It turns out we can.

1.3.1 mkForeign

With mkForeign, we can turn a C function into an IO action. It works like this:

getSizeT : IO Int
getSizeT = mkForeign (FFun "sizeof_size_ t" [] FInt)

Pretty simple. mkForeign takes a specification of what function it needs to call, and we construct this specifica-
tion with FFun. And FFun just takes a name, a list of argument types (we have none), and a return type.

One thing you might want to note: the return type we’ve specified is FInt, not Int. That’s because Int is an
idris type and C functions don’t return idris types. FInt is not an idris type, but is just the representation of the
type of a C int. It tells the compiler “Treat the return value of this C function like it’s a C int, and when you pass
it back into Idris, convert it to an Idris int.”

1.3.2 Caveats of mkForeign

First and foremost: mkForeign is not actually a function. It is treated specially by the compiler, and there are
certain rules you need to follow when using it.

* Rule 1: the name string must be a literal or constant

4 Chapter 1. Type Providers in Idris

Idris Tutorial Series, Release 0.10.2

This does not work:

intIntToInt : String -> Int -> Int -> IO Int
intIntToInt name = mkForeign (FFun name [FInt, FInt] FInt)

You'll just have to bite the bullet and write out the whole mkForeign and FFun expression each time.
* Rule 2: the “call” to mkForeign must be fully applied

This just means that every argument appearing in the list of argument types must be applied wherever you write
mkForeign. The arguments don’t have to be literals or even known at compile time; they just have to be there.
For example, if we have strlen : String -> IO Int, then this is fine:

’strlen str = mkForeign (FFun "strlen" [FString] FInt) str

but this is not fine:

‘strlen = mkForeign (FFun "strlen" [FString] FInt)

Note that this only applies to places where you literally typed mkForeign. Once you’ve defined it, strlen is
just a normal function returning an IO action, and it doesn’t need to be fully applied. This is okay:

lengths : IO [Int]
lengths = mapM strlen 1listOfStrings

1.3.3 Running foreign functions

This is all well and good for writing code that will typecheck. To actually run the code, we’ll need to do just a bit
more work. Exactly what we need to do depends on whether we want to interpret or compile our code.

1.3.4 In the interpreter

If we want to call our foreign functions from interpreted code (such as the REPL or a type provider), we need
to dynamically link a library containing the symbols we need. This is pretty easy to do with the $dynamic
directive:

$dynamic "./filename.so"

Note that the leading ”./” is important: currently, the string you provide is interpreted as by dlopen (), which
on Unix does not search in the current directory by default. If you use the ”./”, the library will be searched for
in the directory from which you run idris (not the location of the file you’re running!). Of course, if you’re using
functions from an installed library rather than something you wrote yourself, the ./” is not necessary.

1.3.5 In an executable

If we want to run our code from an executable, we can statically link instead. We’ll use the $include and
%$11ink directives:

%$include C "filename.h"
%$1link C "filename.o"

Note the extra argument to the directive! We specify that we’re linking a C header and library. Also, unlike
$dynamic, these directives search in the current directory by default. (That is, the directory from which we run
idris.)

1.4 Putting it all together

So, at the beginning of this article I said we’d use type providers to port struct stat to Idris. The relevant
part is just translating all the mysterious typedef’d C types into Idris types, and that’s what we’ll do here.

1.4. Putting it all together 5

Idris Tutorial Series, Release 0.10.2

First, let’s write a C file containing functions that we’ll bind to.

/+ stattypes.c */

int sizeof_dev_t () { return sizeof(dev_t); }
int sizeof_ino_t () { return sizeof(ino_t); }
/% lots more functions like this */

Next, an Idris file to define our providers:

—-— Providers.idr
module Providers

$dynamic "./stattypes.so"

sizeOfDevT : IO Int
sizeOfDevT = mkForeign (FFun "sizeof_ dev_t" [] FInt)
{— lots of similar functions -}

-— now we have an integer, but we want a Provider FTy

—-— since our sizeOfx functions are ordinary IO actions, we
—-— can just map over them.

bytesToType : Int -> Provider FTy

bytesToType 1 = Provide (FIntT IT8) -- "8 bit foreign integer"”
bytesToType 2 = Provide (FIntT IT16)

bytesToType 4 = Provide (FIntT IT32)

bytesToType 8 = Provide (FIntT IT64)

bytesToType _ = Error "Unrecognised integral type."

getDevT : IO (Provider FTy)
getDevT = map bytesToType sizeOfDevT
{— lots of similar functions -}

Finally, we’ll write one more idris file where we use the type providers:

-— Main.idr

module Main

import Providers

%$language TypeProviders

$provide (FDevT : FTy) with getDevT

—-— interpFTy translates a foreign type to the corresponding idris type
DevT : Type

DevT = interpFTy FDevT -- on most systems, DevI = Bits64

—-— We can now use DevT in our program and FDevT in our FFun expressions!

6 Chapter 1. Type Providers in Idris

CHAPTER 2

The Interactive Theorem Prover

This short guide contributed by a community member illustrates how to prove associativity of addition on Nat
using the interactive theorem prover.

First we define a module Foo.idr

module Foo

plusAssoc : plus n (plus m o) = plus (plus n m) o
plusAssoc = ?rhs

We wish to perform induction on n. First we load the file into the Idris REPL as follows:

$ idris Foo.idr

We will be given the following prompt, in future releases the version string will differ:

/) ()

/S] Version 0.9.18.1
S () http://www.idris-lang.org/
[/ IN_,_/_/ /_/___/ Type :? for help

Idris is free software with ABSOLUTELY NO WARRANTY.
For details type :warranty.

Type checking ./Foo.idr

Metavariables: Foo.rhs

*Foo>

2.1 Explore the Context

We start the interactive session by asking Idris to prove the hole rhs using the command :p rhs. Idris by
default will show us the initial context. This looks as follows:

7777777777 Goal: —————————
{ hole 0 }

(n : Nat) —->

(m Nat) —>

(o : Nat) -—>

plus n (plus m o) = plus (plus n m) o

2.2 Application of Intros

We first apply the int ros tactic:

Idris Tutorial Series, Release 0.10.2

-Foo.rhs> intros
—————————— Other goals: -

7777777777 Assumptions: =

—————————— Goal: -
{ hole 3 }:
plus n (plus m o) = plus (plus n m) ©

2.3 Inductiononn

Then apply induction onto n:

-Foo.rhs> induction n
—————————— Other goals: ————————

7777777777 Assumptions: =

—————————— Goal: -

plus Z (plus m o) = plus (plus Z m) ©

2.4 Compute

-Foo.rhs> compute

—————————— Other goals: ————————
elim_SO0

{ hole 2 }

{ hole 1 }

{ hole 0 }

—————————— Assumptions: —_———————

7777777777 Goal: -
elim _70:
plus m o = plus m o

2.5 Trivial

—-Foo.rhs> trivial
—————————— Other goals: -

—————————— Assumptions: e

8 Chapter 2. The Interactive Theorem Prover

Idris Tutorial Series, Release 0.10.2

(n__ Nat)
(plus n__ 0 (plus m o)
plus (S n__0)

->

(plus m o)

Goal:

plus

= plus (plus

(plus n__|

0
(

5 =

S n_0)

2.6 Intros

-Foo.rhs> intros

0

{ hole 5 }:
plus (S n__0)

(plus m o)

(plus m o)

Other goals:

Assumptions:

plus
Goal:

plus (plus

(plus n__ 0 m)

(S n__

2.7 Compute

-Foo.rhs> compute

_ 0
{ hole 5 }:

S (plus n__ 0 (plus m o)

(plus m o)

Other goals:

Assumptions:

plus
Goal:

S

) (plus

(plus n__0 m)

(plus n__0 m)

2.8 Rewrite

-Foo.rhs> rewrite ihn__ 0

Other goals:

2.6. Intros

Idris Tutorial Series, Release 0.10.2

{ hole 1 }
{ hole 0 }
7777777777 Assumptions: ————
n Nat
m Nat
o Nat
n__0 : Nat
ihn_ 0 : plus n_ 0 (plus m o) = plus (plus n__0 m) o
7777777777 Goal: ————————
{ hole 6 }:
S (plus n__ 0 (plus m o)) = S (plus n__0 (plus m o))

2.9 Trivial

-Foo.rhs> trivial
rhs: No more goals.
-Foo.rhs> ged
Proof completed!
Foo.rhs = proof
intros
induction n
compute
trivial
intros
compute
rewrite ihn_ 0
trivial

Two goals were created: one for Z and one for S. Here we have proven associativity, and assembled a tactic based
proof script. This proof script can be added to Foo . idr.

10 Chapter 2. The Interactive Theorem Prover

	Type Providers in Idris
	The Interactive Theorem Prover

