
The Effects Tutorial
Release 0.9.19.1

The Idris Community

November 12, 2015

Contents

1 Introduction 3
1.1 Hello world . 3
1.2 Outline . 4

2 State 5
2.1 First attempt . 5
2.2 Introducing Effects . 6
2.3 Effects and Resources . 8
2.4 Labelled Effects . 8
2.5 !-notation . 9
2.6 The Type Eff . 10

3 Simple Effects 13
3.1 Console I/O . 13
3.2 Exceptions . 14
3.3 Random Numbers . 16
3.4 Non-determinism . 17
3.5 vadd revisited . 17
3.6 Example: An Expression Calculator . 18

4 Dependent Effects 21
4.1 Dependent States . 21
4.2 Result-dependent Effects . 21
4.3 File Management . 22
4.4 Pattern-matching bind . 24

5 Creating New Effects 27
5.1 State . 27
5.2 Console I/O . 29
5.3 Exceptions . 30
5.4 Non-determinism . 30
5.5 File Management . 30

6 Example: A “Mystery Word” Guessing Game 33
6.1 Step 1: Game State . 33
6.2 Step 2: Game Rules . 33
6.3 Step 3: Implement Rules . 34
6.4 Step 4: Implement Interface . 35
6.5 Discussion . 36

7 Further Reading 39

8 Effects Summary 41

i

8.1 EXCEPTION . 41
8.2 FILE_IO . 41
8.3 RND . 42
8.4 SELECT . 42
8.5 STATE . 42
8.6 STDIO . 42
8.7 SYSTEM . 43

ii

The Effects Tutorial, Release 0.9.19.1

A tutorial on the Effects package in Idris.

Note: The documentation for Idris has been published under the Creative Commons CC0 License. As such to
the extent possible under law, The Idris Community has waived all copyright and related or neighbouring rights to
Documentation for Idris.

More information concerning the CC0 can be found online at: http://creativecommons.org/publicdomain/zero/1.0/

Contents 1

http://creativecommons.org/publicdomain/zero/1.0/

The Effects Tutorial, Release 0.9.19.1

2 Contents

CHAPTER 1

Introduction

Pure functional languages with dependent types such as Idris support reasoning about programs directly in the
type system, promising that we can know a program will run correctly (i.e. according to the specification in
its type) simply because it compiles. Realistically, though, things are not so simple: programs have to interact
with the outside world, with user input, input from a network, mutable state, and so on. In this tutorial I will
introduce the library, which is included with the distribution and supports programming and reasoning with side-
effecting programs, supporting mutable state, interaction with the outside world, exceptions, and verified resource
management.

This tutorial assumes familiarity with pure programming in Idris, as described in Sections 1–6 of the main tutorial
1. The examples presented are tested with Idris and can be found in the examples directory of the Idris repository.

Consider, for example, the following introductory function which illustrates the kind of properties which can be
expressed in the type system:

vadd : Vect n Int -> Vect n Int -> Vect n Int
vadd [] [] = []
vadd (x :: xs) (y :: ys) = x + y :: vadd xs ys

This function adds corresponding elements in a pair of vectors. The type guarantees that the vectors will contain
only elements of type Int, and that the input lengths and the output length all correspond. A natural question to
ask here, which is typically neglected by introductory tutorials, is “How do I turn this into a program?” That is,
given some lists entered by a user, how do we get into a position to be able to apply the vadd function? Before
doing so, we will have to:

• Read user input, either from the keyboard, a file, or some other input device.

• Check that the user inputs are valid, i.e. contain only Int and are the same length, and report an error if
not.

• Write output

The complete program will include side-effects for I/O and error handling, before we can get to the pure core
functionality. In this tutorial, we will see how Idris supports side-effects. Furthermore, we will see how we can
use the dependent type system to reason about stateful and side-effecting programs. We will return to this specific
example later.

1.1 Hello world

To give an idea of how programs with effects look in , here is the ubiquitous “Hello world” program, written using
the Effects library:

module Main

import Effects

1 You do not, however, need to know what a monad is!

3

http://www.idris-lang.org/

The Effects Tutorial, Release 0.9.19.1

import Effect.StdIO

hello : Eff () [STDIO]
hello = putStrLn “Hello world!”

main : IO ()
main = run hello

As usual, the entry point is main. All main has to do is invoke the hello function which supports the STDIO
effect for console I/O, and returns the unit value. All programs using the Effects library must import
Effects. The details of the Eff type will be presented in the remainder of this tutorial.

To compile and run this program, Idris needs to be told to include the Effects package, using the -p effects
flag (this flag is required for all examples in this tutorial):

idris hello.idr -o hello -p effects
./hello Hello world!

1.2 Outline

The tutorial is structured as follows: first, in Section State, we will discuss state management, describing why
it is important and introducing the effects library to show how it can be used to manage state. This section
also gives an overview of the syntax of effectful programs. Section Simple Effects then introduces a number of
other effects a program may have: I/O; Exceptions; Random Numbers; and Non-determinism, giving examples
for each, and an extended example combining several effects in one complete program. Section Dependent Effects
introduces dependent effects, showing how states and resources can be managed in types. Section Creating New
Effects shows how new effects can be implemented. Section Example: A “Mystery Word” Guessing Game gives
an extended example showing how to implement a “mystery word” guessing game, using effects to describe the
rules of the game and ensure they are implemented accurately. References to further reading are given in Section
Further Reading.

4 Chapter 1. Introduction

CHAPTER 2

State

Many programs, even pure programs, can benefit from locally mutable state. For example, consider a program
which tags binary tree nodes with a counter, by an inorder traversal (i.e. counting depth first, left to right). This
would perform something like the following:

We can describe binary trees with the following data type BTree and testTree to represent the example input
above:

data BTree a = Leaf
| Node (BTree a) a (BTree a)

testTree : BTree String
testTree = Node (Node Leaf "Jim" Leaf)

"Fred"
(Node (Node Leaf "Alice" Leaf)

"Sheila"
(Node Leaf "Bob" Leaf))

Then our function to implement tagging, beginning to tag with a specific value i, has the following type:

treeTag : (i : Int) -> BTree a -> BTree (Int, a)

2.1 First attempt

Naïvely, we can implement treeTag by implementing a helper function which propagates a counter, returning
the result of the count for each subtree:

treeTagAux : (i : Int) -> BTree a -> (Int, BTree (Int, a))
treeTagAux i Leaf = (i, Leaf)

5

The Effects Tutorial, Release 0.9.19.1

treeTagAux i (Node l x r)
= let (i', l') = treeTagAux i l in
let x' = (i', x) in
let (i'', r') = treeTagAux (i' + 1) r in

(i'', Node l' x' r')

treeTag : (i : Int) -> BTree a -> BTree (Int, a)
treeTag i x = snd (treeTagAux i x)

This gives the expected result when run at the REPL prompt:

*TreeTag> treeTag 1 testTree
Node (Node Leaf (1, "Jim") Leaf)

(2, "Fred")
(Node (Node Leaf (3, "Alice") Leaf)

(4, "Sheila")
(Node Leaf (5, "Bob") Leaf)) : BTree (Int, String)

This works as required, but there are several problems when we try to scale this to larger programs. It is error
prone, because we need to ensure that state is propagated correctly to the recursive calls (i.e. passing the appro-
priate i or i’). It is hard to read, because the functional details are obscured by the state propagation. Perhaps
most importantly, there is a common programming pattern here which should be abstracted but instead has been
implemented by hand. There is local mutable state (the counter) which we have had to make explicit.

2.2 Introducing Effects

Idris provides a library, Effects 1, which captures this pattern and many others involving effectful computation
2. An effectful program f has a type of the following form:

f : (x1 : a1) -> (x2 : a2) -> ... -> Eff t effs

That is, the return type gives the effects that f supports (effs, of type List EFFECT) and the type the compu-
tation returns t. So, our treeTagAux helper could be written with the following type:

treeTagAux : BTree a -> Eff (BTree (Int, a)) [STATE Int]

That is, treeTagAux has access to an integer state, because the list of available effects includes STATE Int.
STATE is declared as follows in the module Effect.State (that is, we must import Effect.State to
be able to use it):

STATE : Type -> EFFECT

It is an effect parameterised by a type (by convention, we write effects in all capitals). The treeTagAux function
is an effectful program which builds a new tree tagged with Ints, and is implemented as follows:

treeTagAux Leaf = pure Leaf
treeTagAux (Node l x r)

= do l' <- treeTagAux l
i <- get
put (i + 1)
r' <- treeTagAux r
pure (Node l' (i, x) r')

There are several remarks to be made about this implementation. Essentially, it hides the state, which can be
accessed using get and updated using put, but it introduces several new features. Specifically, it uses do-
notation, binding variables with <-, and a pure function. There is much to be said about these features, but for
our purposes, it suffices to know the following:

1 Edwin Brady. 2013. Programming and reasoning with algebraic effects and dependent types. SIGPLAN Not. 48, 9 (September 2013),
133-144. DOI=10.1145/2544174.2500581 http://dl.acm.org/citation.cfm?doid=2544174.2500581

2 The earlier paper 3 describes the essential implementation details, although the library presented there is an earlier version which is less
powerful than that presented in this tutorial.

6 Chapter 2. State

http://dl.acm.org/citation.cfm?doid=2544174.2500581

The Effects Tutorial, Release 0.9.19.1

• do blocks allow effectful operations to be sequenced.

• x <- e binds the result of an effectful operation e to a variable x. For example, in the above code,
treeTagAux l is an effectful operation returning BTree (Int, a), so l’ has type BTree
(Int, a).

• pure e turns a pure value e into the result of an effectful operation.

The get and put functions read and write a state t, assuming that the STATE t effect is available. They have
the following types, polymorphic in the state t they manage:

get : Eff t [STATE t]
put : t -> Eff () [STATE t]

A program in Eff can call any other function in Eff provided that the calling function supports at least the effects
required by the called function. In this case, it is valid for treeTagAux to call both get and put because all
three functions support the STATE Int effect.

Programs in Eff are run in some underlying computation context, using the run or runPure function. Using
runPure, which runs an effectful program in the identity context, we can write the treeTag function as follows,
using put to initialise the state:

treeTag : (i : Int) -> BTree a -> BTree (Int, a)
treeTag i x = runPure (do put i

treeTagAux x)

We could also run the program in an impure context such as IO, without changing the definition of treeTagAux,
by using run instead of runPure:

treeTagAux : BTree a -> Eff (BTree (Int, a)) [STATE Int]
...

treeTag : (i : Int) -> BTree a -> IO (BTree (Int, a))
treeTag i x = run (do put i

treeTagAux x)

Note that the definition of treeTagAux is exactly as before. For reference, this complete program (including a
main to run it) is shown in Listing [introprog].

module Main

import Effects
import Effect.State

data BTree a = Leaf
| Node (BTree a) a (BTree a)

instance Show a => Show (BTree a) where
show Leaf = "[]"
show (Node l x r) = "[" ++ show l ++ " "

++ show x ++ " "
++ show r ++ "]"

testTree : BTree String
testTree = Node (Node Leaf "Jim" Leaf)

"Fred"
(Node (Node Leaf "Alice" Leaf)

"Sheila"
(Node Leaf "Bob" Leaf))

treeTagAux : BTree a -> Eff (BTree (Int, a)) [STATE Int]
treeTagAux Leaf = pure Leaf
treeTagAux (Node l x r) = do l' <- treeTagAux l

i <- get
put (i + 1)

2.2. Introducing Effects 7

The Effects Tutorial, Release 0.9.19.1

r' <- treeTagAux r
pure (Node l' (i, x) r')

treeTag : (i : Int) -> BTree a -> BTree (Int, a)
treeTag i x = runPure (do put i; treeTagAux x)

main : IO ()
main = print (treeTag 1 testTree)

2.3 Effects and Resources

Each effect is associated with a resource, which is initialised before an effectful program can be run. For example,
in the case of STATE Int the corresponding resource is the integer state itself. The types of runPure and run
show this (slightly simplified here for illustrative purposes):

runPure : {env : Env id xs} -> Eff a xs -> a
run : Applicative m => {env : Env m xs} -> Eff a xs -> m a

The env argument is implicit, and initialised automatically where possible using default values given by instances
of the following type class:

class Default a where
default : a

Instances of Default are defined for all primitive types, and many library types such as List, Vect, Maybe,
pairs, etc. However, where no default value exists for a resource type (for example, you may want a STATE
type for which there is no Default instance) the resource environment can be given explicitly using one of the
following functions:

runPureInit : Env id xs -> Eff a xs -> a
runInit : Applicative m => Env m xs -> Eff a xs -> m a

To be well-typed, the environment must contain resources corresponding exactly to the effects in xs. For example,
we could also have implemented treeTag by initialising the state as follows:

treeTag : (i : Int) -> BTree a -> BTree (Int, a)
treeTag i x = runPureInit [i] (treeTagAux x)

2.4 Labelled Effects

What if we have more than one state, especially more than one state of the same type? How would get and put
know which state they should be referring to? For example, how could we extend the tree tagging example such
that it additionally counts the number of leaves in the tree? One possibility would be to change the state so that it
captured both of these values, e.g.:

treeTagAux : BTree a -> Eff (BTree (Int, a)) [STATE (Int, Int)]

Doing this, however, ties the two states together throughout (as well as not indicating which integer is which). It
would be nice to be able to call effectful programs which guaranteed only to access one of the states, for example.
In a larger application, this becomes particularly important.

The library therefore allows effects in general to be labelled so that they can be referred to explicitly by a particular
name. This allows multiple effects of the same type to be included. We can count leaves and update the tag
separately, by labelling them as follows:

treeTagAux : BTree a -> Eff (BTree (Int, a))
['Tag ::: STATE Int,
'Leaves ::: STATE Int]

8 Chapter 2. State

The Effects Tutorial, Release 0.9.19.1

The ::: operator allows an arbitrary label to be given to an effect. This label can be any type—it is simply used
to identify an effect uniquely. Here, we have used a symbol type. In general ’name introduces a new symbol, the
only purpose of which is to disambiguate values 3.

When an effect is labelled, its operations are also labelled using the :- operator. In this way, we can say explicitly
which state we mean when using get and put. The tree tagging program which also counts leaves can be written
as follows:

treeTagAux Leaf = do
'Leaves :- update (+1)
pure Leaf

treeTagAux (Node l x r) = do
l' <- treeTagAux l
i <- 'Tag :- get
'Tag :- put (i + 1)
r' <- treeTagAux r
pure (Node l' (i, x) r')

The update function here is a combination of get and put, applying a function to the current state.

update : (x -> x) -> Eff () [STATE x]

Finally, our top level treeTag function now returns a pair of the number of leaves, and the new tree. Resources
for labelled effects are initialised using the := operator (reminiscent of assignment in an imperative language):

treeTag : (i : Int) -> BTree a -> (Int, BTree (Int, a))
treeTag i x = runPureInit ['Tag := i, 'Leaves := 0]

(do x' <- treeTagAux x
leaves <- 'Leaves :- get
pure (leaves, x'))

To summarise, we have:

• ::: to convert an effect to a labelled effect.

• :- to convert an effectful operation to a labelled effectful operation.

• := to initialise a resource for a labelled effect.

Or, more formally with their types (slightly simplified to account only for the situation where available effects are
not updated):

(:::) : lbl -> EFFECT -> EFFECT
(:-) : (l : lbl) -> Eff a [x] -> Eff a [l ::: x]
(:=) : (l : lbl) -> res -> LRes l res

Here, LRes is simply the resource type associated with a labelled effect. Note that labels are polymorphic in the
label type lbl. Hence, a label can be anything—a string, an integer, a type, etc.

2.5 !-notation

In many cases, using do-notation can make programs unnecessarily verbose, particularly in cases where the value
bound is used once, immediately. The following program returns the length of the String stored in the state, for
example:

stateLength : Eff Nat [STATE String]
stateLength = do x <- get

pure (length x)

This seems unnecessarily verbose, and it would be nice to program in a more direct style in these cases. provides
!-notation to help with this. The above program can be written instead as:

3 In practice, ’name simply introduces a new empty type

2.5. !-notation 9

The Effects Tutorial, Release 0.9.19.1

stateLength : Eff Nat [STATE String]
stateLength = pure (length !get)

The notation !expr means that the expression expr should be evaluated and then implicitly bound. Conceptu-
ally, we can think of ! as being a prefix function with the following type:

(!) : Eff a xs -> a

Note, however, that it is not really a function, merely syntax! In practice, a subexpression !expr will lift expr
as high as possible within its current scope, bind it to a fresh name x, and replace !expr with x. Expressions are
lifted depth first, left to right. In practice, !-notation allows us to program in a more direct style, while still giving
a notational clue as to which expressions are effectful.

For example, the expression:

let y = 42 in f !(g !(print y) !x)

is lifted to:

let y = 42 in do y' <- print y
x' <- x
g' <- g y' x'
f g'

2.6 The Type Eff

Underneath, Eff is an overloaded function which translates to an underlying type EffM:

EffM : (m : Type -> Type) -> (t : Type)
-> (List EFFECT)
-> (t -> List EFFECT) -> Type

This is more general than the types we have been writing so far. It is parameterised over an underlying computation
context m, a result type t as we have already seen, as well as a List EFFECT and a function type t -> List
EFFECT.

These additional parameters are the list of input effects, and a list of output effects, computed from the result of
an effectful operation. That is: running an effectful program can change the set of effects available! This is a
particularly powerful idea, and we will see its consequences in more detail later. Some examples of operations
which can change the set of available effects are:

• Updating a state containing a dependent type (for example adding an element to a vector).

• Opening a file for reading is an effect, but whether the file really is open afterwards depends on whether the
file was successfully opened.

• Closing a file means that reading from the file should no longer be possible.

While powerful, this can make uses of the EffM type hard to read. Therefore the library provides an overloaded
function Eff There are the following three versions:

SimpleEff.Eff : (t : Type) -> (input_effs : List EFFECT) -> Type
TransEff.Eff : (t : Type) -> (input_effs : List EFFECT) ->

(output_effs : List EFFECT) -> Type
DepEff.Eff : (t : Type) -> (input_effs : List EFFECT) ->

(output_effs_fn : x -> List EFFECT) -> Type

So far, we have used only the first version, SimpleEff.Eff, which is defined as follows:

Eff : (x : Type) -> (es : List EFFECT) -> Type
Eff x es = {m : Type -> Type} -> EffM m x es (\v => es)

10 Chapter 2. State

The Effects Tutorial, Release 0.9.19.1

i.e. the set of effects remains the same on output. This suffices for the STATE example we have seen so far, and
for many useful side-effecting programs. We could also have written treeTagAux with the expanded type:

treeTagAux : BTree a ->
EffM m (BTree (Int, a)) [STATE Int] (\x => [STATE Int])

Later, we will see programs which update effects:

Eff a xs xs'

which is expanded to

EffM m a xs (_ => xs')

i.e. the set of effects is updated to xs’ (think of a transition in a state machine). There is, for example, a version
of put which updates the type of the state:

putM : y -> Eff () [STATE x] [STATE y]

Also, we have:

Eff t xs (\res => xs')

which is expanded to

EffM m t xs (\res => xs')

i.e. the set of effects is updated according to the result of the operation res, of type t.

Parameterising EffM over an underlying computation context allows us to write effectful programs which are
specific to one context, and in some cases to write programs which extend the list of effects available using the
new function, though this is beyond the scope of this tutorial.

2.6. The Type Eff 11

The Effects Tutorial, Release 0.9.19.1

12 Chapter 2. State

CHAPTER 3

Simple Effects

So far we have seen how to write programs with locally mutable state using the STATE effect. To recap, we have
the definitions below in a module Effect.State

module Effect.State

STATE : Type -> EFFECT

get : Eff x [STATE x]
put : x -> Eff () [STATE x]
putM : y -> Eff () [STATE x] [STATE y]
update : (x -> x) -> Eff () [STATE x]

instance Handler State m

The last line, instance Handler State m, means that the STATE effect is usable in any computation
context m. That is, a program which uses this effect and returns something of type a can be evaluated to something
of type m a using run, for any m. The lower case State is a data type describing the operations which make up
the STATE effect itself—we will go into more detail about this in Section Creating New Effects.

In this section, we will introduce some other supported effects, allowing console I/O, exceptions, random number
generation and non-deterministic programming. For each effect we introduce, we will begin with a summary of
the effect, its supported operations, and the contexts in which it may be used, like that above for STATE, and go
on to present some simple examples. At the end, we will see some examples of programs which combine multiple
effects.

All of the effects in the library, including those described in this section, are summarised in Appendix Effects
Summary.

3.1 Console I/O

Console I/O is supported with the STDIO effect, which allows reading and writing characters and strings to and
from standard input and standard output. Notice that there is a constraint here on the computation context m,
because it only makes sense to support console I/O operations in a context where we can perform (or at the very
least simulate) console I/O:

module Effect.StdIO

STDIO : EFFECT

putChar : Char -> Eff () [STDIO]
putStr : String -> Eff () [STDIO]
putStrLn : String -> Eff () [STDIO]

getStr : Eff String [STDIO]
getChar : Eff Char [STDIO]

13

The Effects Tutorial, Release 0.9.19.1

instance Handler StdIO IO
instance Handler StdIO (IOExcept a)

3.1.1 Examples

A program which reads the user’s name, then says hello, can be written as follows:

hello : Eff () [STDIO]
hello = do putStr "Name? "

x <- getStr
putStrLn ("Hello " ++ trim x ++ "!")

We use trim here to remove the trailing newline from the input. The resource associated with STDIO is simply
the empty tuple, which has a default value (), so we can run this as follows:

main : IO ()
main = run hello

In hello we could also use !-notation instead of x <- getStr, since we only use the string that is read once:

hello : Eff () [STDIO]
hello = do putStr "Name? "

putStrLn ("Hello " ++ trim !getStr ++ "!")

More interestingly, we can combine multiple effects in one program. For example, we can loop, counting the
number of people we’ve said hello to:

hello : Eff () [STATE Int, STDIO]
hello = do putStr "Name? "

putStrLn ("Hello " ++ trim !getStr ++ "!")
update (+1)
putStrLn ("I've said hello to: " ++ show !get ++ " people")
hello

The list of effects given in hello means that the function can call get and put on an integer state, and any
functions which read and write from the console. To run this, main does not need to be changed.

3.1.2 Aside: Resource Types

To find out the resource type of an effect, if necessary (for example if we want to initialise a resource explicitly
with runInit rather than using a default value with run) we can run the resourceType function at the
REPL:

*ConsoleIO> resourceType STDIO
() : Type
*ConsoleIO> resourceType (STATE Int)
Int : Type

3.2 Exceptions

The EXCEPTION effect is declared in module Effect.Exception. This allows programs to exit immediately
with an error, or errors to be handled more generally:

module Effect.Exception

EXCEPTION : Type -> EFFECT

raise : a -> Eff b [EXCEPTION a]

14 Chapter 3. Simple Effects

The Effects Tutorial, Release 0.9.19.1

instance Handler (Exception a) Maybe
instance Handler (Exception a) List
instance Handler (Exception a) (Either a)
instance Handler (Exception a) (IOExcept a)
instance Show a => Handler (Exception a) IO

3.2.1 Example

Suppose we have a String which is expected to represent an integer in the range 0 to n. We can write a function
parseNumber which returns an Int if parsing the string returns a number in the appropriate range, or throws
an exception otherwise. Exceptions are parameterised by an error type:

data Err = NotANumber | OutOfRange

parseNumber : Int -> String -> Eff Int [EXCEPTION Err]
parseNumber num str

= if all isDigit (unpack str)
then let x = cast str in

if (x >=0 && x <= num)
then pure x
else raise OutOfRange

else raise NotANumber

Programs which support the EXCEPTION effect can be run in any context which has some way of throwing errors,
for example, we can run parseNumber in the Either Err context. It returns a value of the form Right x
if successful:

*Exception> the (Either Err Int) $ run (parseNumber 42 "20")
Right 20 : Either Err Int

Or Left e on failure, carrying the appropriate exception:

*Exception> the (Either Err Int) $ run (parseNumber 42 "50")
Left OutOfRange : Either Err Int

*Exception> the (Either Err Int) $ run (parseNumber 42 "twenty")
Left NotANumber : Either Err Int

In fact, we can do a little bit better with parseNumber, and have it return a proof that the integer is in the
required range along with the integer itself. One way to do this is define a type of bounded integers, Bounded:

Bounded : Int -> Type
Bounded x = (n : Int ** So (n >= 0 && n <= x))

Recall that So is parameterised by a Bool, and only So True is inhabited. We can use choose to construct
such a value from the result of a dynamic check:

data So : Bool -> Type = Oh : So True

choose : (b : Bool) -> Either (So b) (So (not b))

We then write parseNumber using choose rather than an if/then/else construct, passing the proof it
returns on success as the boundedness proof:

parseNumber : (x : Int) -> String -> Eff (Bounded x) [EXCEPTION Err]
parseNumber x str

= if all isDigit (unpack str)
then let num = cast str in

case choose (num >=0 && num <= x) of
Left p => pure (num ** p)
Right p => raise OutOfRange

else raise NotANumber

3.2. Exceptions 15

The Effects Tutorial, Release 0.9.19.1

3.3 Random Numbers

Random number generation is also implemented by the library, in module Effect.Random:

module Effect.Random

RND : EFFECT

srand : Integer -> Eff () [RND]
rndInt : Integer -> Integer -> Eff Integer [RND]
rndFin : (k : Nat) -> Eff (Fin (S k)) [RND]

instance Handler Random m

Random number generation is considered side-effecting because its implementation generally relies on some
external source of randomness. The default implementation here relies on an integer seed, which can be set
with srand. A specific seed will lead to a predictable, repeatable sequence of random numbers. There are two
functions which produce a random number:

• rndInt, which returns a random integer between the given lower and upper bounds.

• rndFin, which returns a random element of a finite set (essentially a number with an upper bound
given in its type).

3.3.1 Example

We can use the RND effect to implement a simple guessing game. The guess function, given a target number,
will repeatedly ask the user for a guess, and state whether the guess is too high, too low, or correct:

guess : Int -> Eff () [STDIO]

For reference, the code for guess is given below:

guess : Int -> Eff () [STDIO]
guess target

= do putStr "Guess: "
case run {m=Maybe} (parseNumber 100 (trim !getStr)) of

Nothing => do putStrLn "Invalid input"
guess target

Just (v ** _) =>
case compare v target of

LT => do putStrLn "Too low"
guess target

EQ => putStrLn "You win!"
GT => do putStrLn "Too high"

guess target

Note that we use parseNumber as defined previously to read user input, but we don’t need to list the
EXCEPTION effect because we use a nested run to invoke parseNumber, independently of the calling ef-
fectful program.

To invoke this, we pick a random number within the range 0–100, having set up the random number generator
with a seed, then run guess:

game : Eff () [RND, STDIO]
game = do srand 123456789

guess (fromInteger !(rndInt 0 100))

main : IO ()
main = run game

16 Chapter 3. Simple Effects

The Effects Tutorial, Release 0.9.19.1

If no seed is given, it is set to the default value. For a less predictable game, some better source of randomness
would be required, for example taking an initial seed from the system time. To see how to do this, see the SYSTEM
effect described in Effects Summary.

3.4 Non-determinism

The listing below gives the definition of the non-determinism effect, which allows a program to choose a value
non-deterministically from a list of possibilities in such a way that the entire computation succeeds:

import Effects
import Effect.Select

SELECT : EFFECT

select : List a -> Eff a [SELECT]

instance Handler Selection Maybe
instance Handler Selection List

3.4.1 Example

The SELECT effect can be used to solve constraint problems, such as finding Pythagorean triples. The idea is to
use select to give a set of candidate values, then throw an exception for any combination of values which does
not satisfy the constraint:

triple : Int -> Eff (Int, Int, Int) [SELECT, EXCEPTION String]
triple max = do z <- select [1..max]

y <- select [1..z]
x <- select [1..y]
if (x * x + y * y == z * z)

then pure (x, y, z)
else raise "No triple"

This program chooses a value for z between 1 and max, then values for y and x. In operation, after a select,
the program executes the rest of the do-block for every possible assignment, effectively searching depth-first. If
the list is empty (or an exception is thrown) execution fails.

There are handlers defined for Maybe and List contexts, i.e. contexts which can capture failure. Depending on
the context m, triple will either return the first triple it finds (if in Maybe context) or all triples in the range (if
in List context). We can try this as follows:

main : IO ()
main = do print $ the (Maybe _) $ run (triple 100)

print $ the (List _) $ run (triple 100)

3.5 vadd revisited

We now return to the vadd program from the introduction. Recall the definition:

vadd : Vect n Int -> Vect n Int -> Vect n Int
vadd [] [] = []
vadd (x :: xs) (y :: ys) = x + y :: vadd xs ys

Using , we can set up a program so that it reads input from a user, checks that the input is valid (i.e both vectors
contain integers, and are the same length) and if so, pass it on to vadd. First, we write a wrapper for vadd which
checks the lengths and throw an exception if they are not equal. We can do this for input vectors of length n and m
by matching on the implicit arguments n and m and using decEq to produce a proof of their equality, if they are
equal:

3.4. Non-determinism 17

The Effects Tutorial, Release 0.9.19.1

vadd_check : Vect n Int -> Vect m Int ->
Eff (Vect m Int) [EXCEPTION String]

vadd_check {n} {m} xs ys with (decEq n m)
vadd_check {n} {m=n} xs ys | (Yes Refl) = pure (vadd xs ys)
vadd_check {n} {m} xs ys | (No contra) = raise "Length mismatch"

To read a vector from the console, we implement a function of the following type:

read_vec : Eff (p ** Vect p Int) [STDIO]

This returns a dependent pair of a length, and a vector of that length, because we cannot know in advance how
many integers the user is going to input. We can use -1 to indicate the end of input:

read_vec : Eff (p ** Vect p Int) [STDIO]
read_vec = do putStr "Number (-1 when done): "

case the (Maybe Int) $ run (parseNumber (trim !getStr)) of
Nothing => do putStrLn "Input error"

read_vec
Just v => if (v /= -1)

then do (_ ** xs) <- read_vec
pure (_ ** v :: xs)

else pure (_ ** [])
where
parseNumber : String -> Eff Int [EXCEPTION String]
parseNumber str

= if all (\x => isDigit x || x == '-') (unpack str)
then pure (cast str)
else raise "Not a number"

This uses a variation on parseNumber which does not require a number to be within range.

Finally, we write a program which reads two vectors and prints the result of pairwise addition of them, throwing
an exception if the inputs are of differing lengths:

do_vadd : Eff () [STDIO, EXCEPTION String]
do_vadd = do putStrLn "Vector 1"

(_ ** xs) <- read_vec
putStrLn "Vector 2"
(_ ** ys) <- read_vec
putStrLn (show !(vadd_check xs ys))

By having explicit lengths in the type, we can be sure that vadd is only being used where the lengths of inputs are
guaranteed to be equal. This does not stop us reading vectors from user input, but it does require that the lengths
are checked and any discrepancy is dealt with gracefully.

3.6 Example: An Expression Calculator

To show how these effects can fit together, let us consider an evaluator for a simple expression language, with
addition and integer values.

data Expr = Val Integer
| Add Expr Expr

An evaluator for this language always returns an Integer, and there are no situations in which it can fail!

eval : Expr -> Integer
eval (Val x) = x
eval (Add l r) = eval l + eval r

If we add variables, however, things get more interesting. The evaluator will need to be able to access the values
stored in variables, and variables may be undefined.

18 Chapter 3. Simple Effects

The Effects Tutorial, Release 0.9.19.1

data Expr = Val Integer
| Var String
| Add Expr Expr

To start, we will change the type of eval so that it is effectful, and supports an exception effect for throwing
errors, and a state containing a mapping from variable names (as String) to their values:

Env : Type
Env = List (String, Integer)

eval : Expr -> Eff Integer [EXCEPTION String, STATE Env]
eval (Val x) = return x
eval (Add l r) = return $!(eval l) + !(eval r)

Note that we are using !-notation to avoid having to bind subexpressions in a do block. Next, we add a case for
evaluating Var:

eval (Var x) = case lookup x !get of
Nothing => raise $ "No such variable " ++ x
Just val => return val

This retrieves the state (with get, supported by the STATE Env effect) and raises an exception if the variable is
not in the environment (with raise, supported by the EXCEPTION String effect).

To run the evaluator on a particular expression in a particular environment of names and their values, we can write
a function which sets the state then invokes eval:

runEval : List (String, Integer) -> Expr -> Maybe Integer
runEval args expr = run (eval' expr)

where eval' : Expr -> Eff Integer [EXCEPTION String, STATE Env]
eval' e = do put args

eval e

We have picked Maybe as a computation context here; it needs to be a context which is available for every effect
supported by eval. In particular, because we have exceptions, it needs to be a context which supports exceptions.
Alternatively, Either String or IO would be fine, for example.

What if we want to extend the evaluator further, with random number generation? To achieve this, we add a new
constructor to Expr, which gives a random number up to a maximum value:

data Expr = Val Integer
| Var String
| Add Expr Expr
| Random Integer

Then, we need to deal with the new case, making sure that we extend the list of events to include RND. It doesn’t
matter where RND appears in the list, as long as it is present:

eval : Expr -> Eff Integer [EXCEPTION String, RND, STATE Env]

eval (Random upper) = rndInt 0 upper

For test purposes, we might also want to print the random number which has been generated:

eval (Random upper) = do val <- rndInt 0 upper
putStrLn (show val)
return val

If we try this without extending the effects list, we would see an error something like the following:

Expr.idr:28:6:When elaborating right hand side of eval:
Can't solve goal

SubList [STDIO]
[(EXCEPTION String), RND, (STATE (List (String, Integer)))]

3.6. Example: An Expression Calculator 19

The Effects Tutorial, Release 0.9.19.1

In other words, the STDIO effect is not available. We can correct this simply by updating the type of eval to
include STDIO.

eval : Expr -> Eff Integer [STDIO, EXCEPTION String, RND, STATE Env]

Note that using STDIO will restrict the number of contexts in which eval can be run to those which support
STDIO, such as IO. Once effect lists get longer, it can be a good idea instead to encapsulate sets of effects in a
type synonym. This is achieved as follows, simply by defining a function which computes a type, since types are
first class in Idris:

EvalEff : Type -> Type
EvalEff t = Eff t [STDIO, EXCEPTION String, RND, STATE Env]

eval : Expr -> EvalEff Integer

20 Chapter 3. Simple Effects

CHAPTER 4

Dependent Effects

In the programs we have seen so far, the available effects have remained constant. Sometimes, however, an
operation can change the available effects. The simplest example occurs when we have a state with a dependent
type—adding an element to a vector also changes its type, for example, since its length is explicit in the type. In
this section, we will see how the library supports this. Firstly, we will see how states with dependent types can be
implemented. Secondly, we will see how the effects can depend on the result of an effectful operation. Finally,
we will see how this can be used to implement a type-safe and resource-safe protocol for file management.

4.1 Dependent States

Suppose we have a function which reads input from the console, converts it to an integer, and adds it to a list which
is stored in a STATE. It might look something like the following:

readInt : Eff () [STATE (List Int), STDIO]
readInt = do let x = trim !getStr

put (cast x :: !get)

But what if, instead of a list of integers, we would like to store a Vect, maintaining the length in the type?

readInt : Eff () [STATE (Vect n Int), STDIO]
readInt = do let x = trim !getStr

put (cast x :: !get)

This will not type check! Although the vector has length n on entry to readInt, it has length S n on exit. The
library allows us to express this as follows:

readInt : Eff ()[STATE (Vect n Int), STDIO]
[STATE (Vect (S n) Int), STDIO]

readInt = do let x = trim !getStr
putM (cast x :: !get)

The type Eff a xs xs’ means that the operation begins with effects xs available, and ends with effects xs’
available. We have used putM to update the state, where the M suffix indicates that the type is being updated as
well as the value. It has the following type:

putM : y -> Eff () [STATE x] [STATE y]

4.2 Result-dependent Effects

Often, whether a state is updated could depend on the success or otherwise of an operation. In our readInt
example, we might wish to update the vector only if the input is a valid integer (i.e. all digits). As a first attempt,
we could try the following, returning a Bool which indicates success:

21

The Effects Tutorial, Release 0.9.19.1

readInt : Eff Bool [STATE (Vect n Int), STDIO]
[STATE (Vect (S n) Int), STDIO]

readInt = do let x = trim !getStr
case all isDigit (unpack x) of

False => pure False
True => do putM (cast x :: !get)

pure True

Unfortunately, this will not type check because the vector does not get extended in both branches of the case!

MutState.idr:18:19:When elaborating right hand side of Main.case
block in readInt:
Unifying n and S n would lead to infinite value

Clearly, the size of the resulting vector depends on whether or not the value read from the user was valid. We can
express this in the type:

readInt : Eff Bool [STATE (Vect n Int), STDIO]
(\ok => if ok then [STATE (Vect (S n) Int), STDIO]

else [STATE (Vect n Int), STDIO])
readInt = do let x = trim !getStr

case all isDigit (unpack x) of
False => pureM False
True => do putM (cast x :: !get)

pureM True

Using pureM rather than pure allows the output effects to be calculated from the value given. Its type is:

pureM : (val : a) -> EffM m a (xs val) xs

When using readInt, we will have to check its return value in order to know what the new set of effects is. For
example, to read a set number of values into a vector, we could write the following:

readN : (n : Nat) ->
Eff () [STATE (Vect m Int), STDIO]

[STATE (Vect (n + m) Int), STDIO]
readN Z = pure ()
readN {m} (S k) = case !readInt of

True => rewrite plusSuccRightSucc k m in readN k
False => readN (S k)

The case analysis on the result of readInt means that we know in each branch whether reading the integer
succeeded, and therefore how many values still need to be read into the vector. What this means in practice is that
the type system has verified that a necessary dynamic check (i.e. whether reading a value succeeded) has indeed
been done.

Note: Only case will work here. We cannot use if/then/else because the then and else branches must
have the same type. The case construct, however, abstracts over the value being inspected in the type of each
branch.

4.3 File Management

A practical use for dependent effects is in specifying resource usage protocols and verifying that they are exe-
cuted correctly. For example, file management follows a resource usage protocol with the following (informally
specified) requirements:

• It is necessary to open a file for reading before reading it

• Opening may fail, so the programmer should check whether opening was successful

• A file which is open for reading must not be written to, and vice versa

22 Chapter 4. Dependent Effects

The Effects Tutorial, Release 0.9.19.1

• When finished, an open file handle should be closed

• When a file is closed, its handle should no longer be used

These requirements can be expressed formally in , by creating a FILE_IO effect parameterised over a file handle
state, which is either empty, open for reading, or open for writing. The FILE_IO effect’s definition is given
below. Note that this effect is mainly for illustrative purposes—typically we would also like to support random
access files and better reporting of error conditions.

module Effect.File

import Effects
import Control.IOExcept

FILE_IO : Type -> EFFECT

data OpenFile : Mode -> Type

open : (fname : String)
-> (m : Mode)
-> Eff Bool [FILE_IO ()]

(\res => [FILE_IO (case res of
True => OpenFile m
False => ())])

close : Eff () [FILE_IO (OpenFile m)] [FILE_IO ()]

readLine : Eff String [FILE_IO (OpenFile Read)]
writeLine : String -> Eff () [FILE_IO (OpenFile Write)]
eof : Eff Bool [FILE_IO (OpenFile Read)]

instance Handler FileIO IO

In particular, consider the type of open:

open : (fname : String)
-> (m : Mode)
-> Eff Bool [FILE_IO ()]

(\res => [FILE_IO (case res of
True => OpenFile m
False => ())])

This returns a Bool which indicates whether opening the file was successful. The resulting state depends on
whether the operation was successful; if so, we have a file handle open for the stated purpose, and if not, we have
no file handle. By case analysis on the result, we continue the protocol accordingly.

readFile : Eff (List String) [FILE_IO (OpenFile Read)]
readFile = readAcc [] where

readAcc : List String -> Eff (List String) [FILE_IO (OpenFile Read)]
readAcc acc = if (not !eof)

then readAcc (!readLine :: acc)
else pure (reverse acc)

Given a function readFile, above, which reads from an open file until reaching the end, we can write a program
which opens a file, reads it, then displays the contents and closes it, as follows, correctly following the protocol:

dumpFile : String -> Eff () [FILE_IO (), STDIO]
dumpFile name = case !(open name Read) of

True => do putStrLn (show !readFile)
close

False => putStrLn ("Error!")

The type of dumpFile, with FILE_IO () in its effect list, indicates that any use of the file resource will follow
the protocol correctly (i.e. it both begins and ends with an empty resource). If we fail to follow the protocol
correctly (perhaps by forgetting to close the file, failing to check that open succeeded, or opening the file for

4.3. File Management 23

The Effects Tutorial, Release 0.9.19.1

writing) then we will get a compile-time error. For example, changing open name Read to open name
Write yields a compile-time error of the following form:

FileTest.idr:16:18:When elaborating right hand side of Main.case
block in testFile:
Can't solve goal

SubList [(FILE_IO (OpenFile Read))]
[(FILE_IO (OpenFile Write)), STDIO]

In other words: when reading a file, we need a file which is open for reading, but the effect list contains a FILE_IO
effect carrying a file open for writing.

4.4 Pattern-matching bind

It might seem that having to test each potentially failing operation with a case clause could lead to ugly code, with
lots of nested case blocks. Many languages support exceptions to improve this, but unfortunately exceptions may
not allow completely clean resource management—for example, guaranteeing that any open which did succeed
has a corresponding close.

Idris supports pattern-matching bindings, such as the following:

dumpFile : String -> Eff () [FILE_IO (), STDIO]
dumpFile name = do True <- open name Read

putStrLn (show !readFile)
close

This also has a problem: we are no longer dealing with the case where opening a file failed! The solution is to
extend the pattern-matching binding syntax to give brief clauses for failing matches. Here, for example, we could
write:

dumpFile : String -> Eff () [FILE_IO (), STDIO]
dumpFile name = do True <- open name Read | False => putStrLn "Error"

putStrLn (show !readFile)
close

This is exactly equivalent to the definition with the explicit case. In general, in a do-block, the syntax:

do pat <- val | <alternatives>
p

is desugared to

do x <- val
case x of

pat => p
<alternatives>

There can be several alternatives, separated by a vertical bar |. For example, there is a SYSTEM effect
which supports reading command line arguments, among other things (see Appendix Effects Summary). To read
command line arguments, we can use getArgs:

getArgs : Eff (List String) [SYSTEM]

A main program can read command line arguments as follows, where in the list which is returned, the first element
prog is the executable name and the second is an expected argument:

emain : Eff () [SYSTEM, STDIO]
emain = do [prog, arg] <- getArgs

putStrLn $ "Argument is " ++ arg
{- ... rest of function ... -}

Unfortunately, this will not fail gracefully if no argument is given, or if too many arguments are given. We can
use pattern matching bind alternatives to give a better (more informative) error:

24 Chapter 4. Dependent Effects

The Effects Tutorial, Release 0.9.19.1

emain : Eff () [SYSTEM, STDIO]
emain = do [prog, arg] <- getArgs | [] => putStrLn "Can't happen!"

| [prog] => putStrLn "No arguments!"
| _ => putStrLn "Too many arguments!"

putStrLn $ "Argument is " ++ arg
{- ... rest of function ... -}

If getArgs does not return something of the form [prog, arg] the alternative which does match is executed
instead, and that value returned.

4.4. Pattern-matching bind 25

The Effects Tutorial, Release 0.9.19.1

26 Chapter 4. Dependent Effects

CHAPTER 5

Creating New Effects

We have now seen several side-effecting operations provided by the Effects library, and examples of their use
in Section Simple Effects. We have also seen how operations may modify the available effects by changing state in
Section Dependent Effects. We have not, however, yet seen how these operations are implemented. In this section,
we describe how a selection of the available effects are implemented, and show how new effectful operations may
be provided.

5.1 State

Effects are described by algebraic data types, where the constructors describe the operations provided when the
effect is available. Stateful operations are described as follows:

data State : Effect where
Get : State a a (\x => a)
Put : b -> State () a (\x => b)

Effect itself is a type synonym, giving the required type for an effect signature:

Effect : Type
Effect = (result : Type) ->

(input_resource : Type) ->
(output_resource : result -> Type) -> Type

Each effect is associated with a resource. The second argument to an effect signature is the resource type on input
to an operation, and the third is a function which computes the resource type on output. Here, it means:

• Get takes no arguments. It has a resource of type a, which is not updated, and running the Get operation
returns something of type a.

• Put takes a b as an argument. It has a resource of type a on input, which is updated to a resource of type
b. Running the Put operation returns the element of the unit type.

The effects library provides an overloaded function sig which can make effect signatures more concise, particu-
larly when the result has no effect on the resource type. For State, we can write:

data State : Effect where
Get : sig State a a
Put : b -> sig State () a b

There are four versions of sig, depending on whether we are interested in the resource type, and whether we are
updating the resource. Idris will infer the appropriate version from usage.

NoResourceEffect.sig : Effect -> Type -> Type
NoUpdateEffect.sig : Effect -> (ret : Type) ->

(resource : Type) -> Type
UpdateEffect.sig : Effect -> (ret : Type) ->

(resource_in : Type) ->

27

The Effects Tutorial, Release 0.9.19.1

(resource_out : Type) -> Type
DepUpdateEffect.sig : Effect -> (ret : Type) ->

(resource_in : Type) ->
(resource_out : ret -> Type) -> Type

In order to convert State (of type Effect) into something usable in an effects list, of type EFFECT, we write
the following:

STATE : Type -> EFFECT
STATE t = MkEff t State

MkEff constructs an EFFECT by taking the resource type (here, the twhich parameterises STATE) and the effect
signature (here, State). For reference, EFFECT is declared as follows:

data EFFECT : Type where
MkEff : Type -> Effect -> EFFECT

Recall that to run an effectful program in Eff, we use one of the run family of functions to run the program in
a particular computation context m. For each effect, therefore, we must explain how it is executed in a particular
computation context for run to work in that context. This is achieved with the following type class:

class Handler (e : Effect) (m : Type -> Type) where
handle : resource -> (eff : e t resource resource') ->

((x : t) -> resource' x -> m a) -> m a

We have already seen some instance declarations in the effect summaries in Section Simple Effects. An instance
of Handler e m means that the effect declared with signature e can be run in computation context m. The
handle function takes:

• The resource on input (so, the current value of the state for State)

• The effectful operation (either Get or Put x for State)

• A continuation, which we conventionally call k, and should be passed the result value of the operation, and
an updated resource.

There are two reasons for taking a continuation here: firstly, this is neater because there are multiple return values
(a new resource and the result of the operation); secondly, and more importantly, the continuation can be called
zero or more times.

A Handler for State simply passes on the value of the state, in the case of Get, or passes on a new state, in
the case of Put. It is defined the same way for all computation contexts:

instance Handler State m where
handle st Get k = k st st
handle st (Put n) k = k () n

This gives enough information for Get and Put to be used directly in Eff programs. It is tidy, however, to define
top level functions in Eff, as follows:

get : Eff x [STATE x]
get = call Get

put : x -> Eff () [STATE x]
put val = call (Put val)

putM : y -> Eff () [STATE x] [STATE y]
putM val = call (Put val)

An implementation detail (aside): The call function converts an Effect to a function in Eff, given a proof
that the effect is available. This proof can be constructed automatically by , since it is essentially an index into a
statically known list of effects:

call : {e : Effect} ->
(eff : e t a b) -> {auto prf : EffElem e a xs} ->
Eff t xs (\v => updateResTy v xs prf eff)

28 Chapter 5. Creating New Effects

The Effects Tutorial, Release 0.9.19.1

This is the reason for the Can’t solve goal error when an effect is not available: the implicit proof prf has
not been solved automatically because the required effect is not in the list of effects xs.

Such details are not important for using the library, or even writing new effects, however.

5.1.1 Summary

The following listing summarises what is required to define the STATE effect:

data State : Effect where
Get : sig State a a
Put : b -> sig State () a b

STATE : Type -> EFFECT
STATE t = MkEff t State

instance Handler State m where
handle st Get k = k st st
handle st (Put n) k = k () n

get : Eff x [STATE x]
get = call Get

put : x -> Eff () [STATE x]
put val = call (Put val)

putM : y -> Eff () [STATE x] [STATE y]
putM val = call (Put val)

5.2 Console I/O

Then listing below gives the definition of the STDIO effect, including handlers for IO and IOExcept. We omit
the definition of the top level Eff functions, as this merely invoke the effects PutStr, GetStr, PutCh and
GetCh directly.

Note that in this case, the resource is the unit type in every case, since the handlers merely apply the IO equivalents
of the effects directly.

data StdIO : Effect where
PutStr : String -> sig StdIO ()
GetStr : sig StdIO String
PutCh : Char -> sig StdIO ()
GetCh : sig StdIO Char

instance Handler StdIO IO where
handle () (PutStr s) k = do putStr s; k () ()
handle () GetStr k = do x <- getLine; k x ()
handle () (PutCh c) k = do putChar c; k () ()
handle () GetCh k = do x <- getChar; k x ()

instance Handler StdIO (IOExcept a) where
handle () (PutStr s) k = do ioe_lift $ putStr s; k () ()
handle () GetStr k = do x <- ioe_lift $ getLine; k x ()
handle () (PutCh c) k = do ioe_lift $ putChar c; k () ()
handle () GetCh k = do x <- ioe_lift $ getChar; k x ()

STDIO : EFFECT
STDIO = MkEff () StdIO

5.2. Console I/O 29

The Effects Tutorial, Release 0.9.19.1

5.3 Exceptions

The listing below gives the definition of the Exception effect, including two of its handlers for Maybe and
List. The only operation provided is Raise. The key point to note in the definitions of these handlers is that
the continuation k is not used. Running Raise therefore means that computation stops with an error.

data Exception : Type -> Effect where
Raise : a -> sig (Exception a) b

instance Handler (Exception a) Maybe where
handle _ (Raise e) k = Nothing

instance Handler (Exception a) List where
handle _ (Raise e) k = []

EXCEPTION : Type -> EFFECT
EXCEPTION t = MkEff () (Exception t)

5.4 Non-determinism

The following listing gives the definition of the Select effect for writing non-deterministic programs, including
a handler for List context which returns all possible successful values, and a handler for Maybe context which
returns the first successful value.

data Selection : Effect where
Select : List a -> sig Selection a

instance Handler Selection Maybe where
handle _ (Select xs) k = tryAll xs where

tryAll [] = Nothing
tryAll (x :: xs) = case k x () of

Nothing => tryAll xs
Just v => Just v

instance Handler Selection List where
handle r (Select xs) k = concatMap (\x => k x r) xs

SELECT : EFFECT
SELECT = MkEff () Selection

Here, the continuation is called multiple times in each handler, for each value in the list of possible values. In the
List handler, we accumulate all successful results, and in the Maybe handler we try the first value in the list,
and try later values only if that fails.

5.5 File Management

Result-dependent effects are no different from non-dependent effects in the way they are implemented. The listing
below illustrates this for the FILE_IO effect. The syntax for state transitions { x ==> {res} x’ }, where
the result state x’ is computed from the result of the operation res, follows that for the equivalent Eff programs.

data FileIO : Effect where
Open : (fname: String)

-> (m : Mode)
-> sig FileIO Bool () (\res => case res of

True => OpenFile m
False => ())

Close : sig FileIO () (OpenFile m)

30 Chapter 5. Creating New Effects

The Effects Tutorial, Release 0.9.19.1

ReadLine : sig FileIO String (OpenFile Read)
WriteLine : String -> sig FileIO () (OpenFile Write)
EOF : sig FileIO Bool (OpenFile Read)

instance Handler FileIO IO where
handle () (Open fname m) k = do h <- openFile fname m

if !(validFile h)
then k True (FH h)
else k False ()

handle (FH h) Close k = do closeFile h
k () ()

handle (FH h) ReadLine k = do str <- fread h
k str (FH h)

handle (FH h) (WriteLine str) k = do fwrite h str
k () (FH h)

handle (FH h) EOF k = do e <- feof h
k e (FH h)

FILE_IO : Type -> EFFECT
FILE_IO t = MkEff t FileIO

Note that in the handler for Open, the types passed to the continuation k are different depending on whether the
result is True (opening succeeded) or False (opening failed). This uses validFile, defined in the Prelude,
to test whether a file handler refers to an open file or not.

5.5. File Management 31

The Effects Tutorial, Release 0.9.19.1

32 Chapter 5. Creating New Effects

CHAPTER 6

Example: A “Mystery Word” Guessing Game

In this section, we will use the techniques and specific effects discussed in the tutorial so far to implement a larger
example, a simple text-based word-guessing game. In the game, the computer chooses a word, which the player
must guess letter by letter. After a limited number of wrong guesses, the player loses 1.

We will implement the game by following these steps:

1. Define the game state, in enough detail to express the rules

2. Define the rules of the game (i.e. what actions the player may take, and how these actions affect the game
state)

3. Implement the rules of the game (i.e. implement state updates for each action)

4. Implement a user interface which allows a player to direct actions

Step 2 may be achieved by defining an effect which depends on the state defined in step 1. Then step 3 involves
implementing a Handler for this effect. Finally, step 4 involves implementing a program in Eff using the newly
defined effect (and any others required to implement the interface).

6.1 Step 1: Game State

First, we categorise the game states as running games (where there are a number of guesses available, and a
number of letters still to guess), or non-running games (i.e. games which have not been started, or games which
have been won or lost).

data GState = Running Nat Nat | NotRunning

Notice that at this stage, we say nothing about what it means to make a guess, what the word to be guessed is,
how to guess letters, or any other implementation detail. We are only interested in what is necessary to describe
the game rules.

We will, however, parameterise a concrete game state Mystery over this data:

data Mystery : GState -> Type

6.2 Step 2: Game Rules

We describe the game rules as a dependent effect, where each action has a precondition (i.e. what the game state
must be before carrying out the action) and a postcondition (i.e. how the action affects the game state). Informally,
these actions with the pre- and postconditions are:

Guess Guess a letter in the word.
1 Readers may recognise this game by the name “Hangman”.

33

The Effects Tutorial, Release 0.9.19.1

• Precondition: The game must be running, and there must be both guesses still available, and letters
still to be guessed.

• Postcondition: If the guessed letter is in the word and not yet guessed, reduce the number of letters,
otherwise reduce the number of guesses.

Won Declare victory

• Precondition: The game must be running, and there must be no letters still to be guessed.

• Postcondition: The game is no longer running.

Lost Accept defeat

• Precondition: The game must be running, and there must be no guesses left.

• Postcondition: The game is no longer running.

NewWord Set a new word to be guessed

• Precondition: The game must not be running.

• Postcondition: The game is running, with 6 guesses available (the choice of 6 is somewhat arbitrary
here) and the number of unique letters in the word still to be guessed.

Get Get a string representation of the game state. This is for display purposes; there are no pre- or postconditions.

We can make these rules precise by declaring them more formally in an effect signature:

data MysteryRules : Effect where
Guess : (x : Char) ->

sig MysteryRules Bool
(Mystery (Running (S g) (S w)))
(\inword => if inword

then Mystery (Running (S g) w)
else Mystery (Running g (S w)))

Won : sig MysteryRules () (Mystery (Running g 0))
(Mystery NotRunning)

Lost : sig MysteryRules () (Mystery (Running 0 g))
(Mystery NotRunning)

NewWord : (w : String) ->
sig MysteryRules () (Mystery NotRunning) (Mystery (Running 6 (length (letters w))))

Get : sig MysteryRules String (Mystery h)

This description says nothing about how the rules are implemented. In particular, it does not specify how to tell
whether a guessed letter was in a word, just that the result of Guess depends on it.

Nevertheless, we can still create an EFFECT from this, and use it in an Eff program. Implementing a Handler
for MysteryRules will then allow us to play the game.

MYSTERY : GState -> EFFECT
MYSTERY h = MkEff (Mystery h) MysteryRules

6.3 Step 3: Implement Rules

To implement the rules, we begin by giving a concrete definition of game state:

data Mystery : GState -> Type where
Init : Mystery NotRunning
GameWon : (word : String) -> Mystery NotRunning
GameLost : (word : String) -> Mystery NotRunning
MkG : (word : String) ->

(guesses : Nat) ->
(got : List Char) ->
(missing : Vect m Char) ->
Mystery (Running guesses m)

34 Chapter 6. Example: A “Mystery Word” Guessing Game

The Effects Tutorial, Release 0.9.19.1

If a game is NotRunning, that is either because it has not yet started (Init) or because it is won or lost
(GameWon and GameLost, each of which carry the word so that showing the game state will reveal the word
to the player). Finally, MkG captures a running game’s state, including the target word, the letters successfully
guessed, and the missing letters. Using a Vect for the missing letters is convenient since its length is used in the
type.

To initialise the state, we implement the following functions: letters, which returns a list of unique letters in a
String (ignoring spaces) and initState which sets up an initial state considered valid as a postcondition for
NewWord.

letters : String -> List Char
initState : (x : String) -> Mystery (Running 6 (length (letters x)))

When checking if a guess is in the vector of missing letters, it is convenient to return a proof that the guess is in
the vector, using isElem below, rather than merely a Bool:

data IsElem : a -> Vect n a -> Type where
First : IsElem x (x :: xs)
Later : IsElem x xs -> IsElem x (y :: xs)

isElem : DecEq a => (x : a) -> (xs : Vect n a) -> Maybe (IsElem x xs)

The reason for returning a proof is that we can use it to remove an element from the correct position in a vector:

shrink : (xs : Vect (S n) a) -> IsElem x xs -> Vect n a

We leave the definitions of letters, init, isElem and shrink as exercises. Having implemented these, the
Handler implementation for MysteryRules is surprisingly straightforward:

instance Handler MysteryRules m where
handle (MkG w g got []) Won k = k () (GameWon w)
handle (MkG w Z got m) Lost k = k () (GameLost w)

handle st Get k = k (show st) st
handle st (NewWord w) k = k () (initState w)

handle (MkG w (S g) got m) (Guess x) k =
case isElem x m of

Nothing => k False (MkG w _ got m)
(Just p) => k True (MkG w _ (x :: got) (shrink m p))

Each case simply involves directly updating the game state in a way which is consistent with the declared rules. In
particular, in Guess, if the handler claims that the guessed letter is in the word (by passing True to k), there is
no way to update the state in such a way that the number of missing letters or number of guesses does not follow
the rules.

6.4 Step 4: Implement Interface

Having described the rules, and implemented state transitions which follow those rules as an effect handler, we
can now write an interface for the game which uses the MYSTERY effect:

game : Eff () [MYSTERY (Running (S g) w), STDIO]
[MYSTERY NotRunning, STDIO]

The type indicates that the game must start in a running state, with some guesses available, and eventually reach a
not-running state (i.e. won or lost). The only way to achieve this is by correctly following the stated rules.

Note that the type of game makes no assumption that there are letters to be guessed in the given word (i.e. it is
w rather than S w). This is because we will be choosing a word at random from a vector of String, and at no
point have we made it explicit that those String are non-empty.

Finally, we need to initialise the game by picking a word at random from a list of candidates, setting it as the target
using NewWord, then running game:

6.4. Step 4: Implement Interface 35

The Effects Tutorial, Release 0.9.19.1

runGame : Eff () [MYSTERY NotRunning, RND, SYSTEM, STDIO]
runGame = do srand !time

let w = index !(rndFin _) words
call $ NewWord w
game
putStrLn !(call Get)

We use the system time (time from the SYSTEM effect; see Appendix Effects Summary) to initialise the random
number generator, then pick a random Fin to index into a list of words. For example, we could initialise a word
list as follows:

words : ?wtype
words = with Vect ["idris","agda","haskell","miranda",

"java","javascript","fortran","basic",
"coffeescript","rust"]

wtype = proof search

Note: Rather than have to explicitly declare a type with the vector’s length, it is convenient to give a hole ?wtype
and let Idris’s proof search mechanism find the type. This is a limited form of type inference, but very useful in
practice.

A possible complete implementation of game is presented below:

game : Eff () [MYSTERY (Running (S g) w), STDIO]
[MYSTERY NotRunning, STDIO]

game {w=Z} = Won
game {w=S _}

= do putStrLn !Get
putStr "Enter guess: "
let guess = trim !getStr
case choose (not (guess == "")) of

(Left p) => processGuess (strHead' guess p)
(Right p) => do putStrLn "Invalid input!"

game
where
processGuess : Char -> Eff () [MYSTERY (Running (S g) (S w)), STDIO]

[MYSTERY NotRunning, STDIO]
processGuess {g} {w} c

= case !(Main.Guess c) of
True => do putStrLn "Good guess!"

case w of
Z => Won
(S k) => game

False => do putStrLn "No, sorry"
case g of

Z => Lost
(S k) => game

6.5 Discussion

Writing the rules separately as an effect, then an implementation which uses that effect, ensures that the imple-
mentation must follow the rules. This has practical applications in more serious contexts; MysteryRules for
example can be though of as describing a protocol that a game player most follow, or alternative a precisely-typed
API.

In practice, we wouldn’t really expect to write rules first then implement the game once the rules were complete.
Indeed, I didn’t do so when constructing this example! Rather, I wrote down a set of likely rules making any
assumptions explicit in the state transitions for MysteryRules. Then, when implementing game at first, any
incorrect assumption was caught as a type error. The following errors were caught during development:

36 Chapter 6. Example: A “Mystery Word” Guessing Game

The Effects Tutorial, Release 0.9.19.1

• Not realising that allowing NewWord to be an arbitrary string would mean that game would have to deal
with a zero-length word as a starting state.

• Forgetting to check whether a game was won before recursively calling processGuess, thus accidentally
continuing a finished game.

• Accidentally checking the number of missing letters, rather than the number of remaining guesses, when
checking if a game was lost.

These are, of course, simple errors, but were caught by the type checker before any testing of the game.

6.5. Discussion 37

The Effects Tutorial, Release 0.9.19.1

38 Chapter 6. Example: A “Mystery Word” Guessing Game

CHAPTER 7

Further Reading

This tutorial has given an introduction to writing and reasoning about side-effecting programs in Idris, using the
Effects library. More details about the implementation of the library, such as how run works, how handlers
are invoked, etc, are given in a separate paper 1.

Some libraries and programs which use Effects can be found in the following places:

• https://github.com/edwinb/SDL-idris — some bindings for the SDL media library, supporting graphics in
particular.

• https://github.com/edwinb/idris-demos — various demonstration programs, including several examples
from this tutorial, and a “Space Invaders” game.

• https://github.com/SimonJF/IdrisNet2 — networking and socket libraries.

• https://github.com/edwinb/Protocols — a high level communication protocol description language.

The inspiration for the Effects library was Bauer and Pretnar’s Eff language 2, which describes a language
based on algebraic effects and handlers. Other recent languages and libraries have also been built on this ideas,
for example 3 and 4. The theoretical foundations are also well-studied see 5, 6, 7, 8.

1 Edwin Brady. 2013. Programming and reasoning with algebraic effects and dependent types. SIGPLAN Not. 48, 9 (September 2013),
133-144. DOI=10.1145/2544174.2500581 https://dl.acm.org/citation.cfm?doid=2544174.2500581

2 Andrej Bauer, Matija Pretnar, Programming with algebraic effects and handlers, Journal of Logical and Algebraic Methods in Program-
ming, Volume 84, Issue 1, January 2015, Pages 108-123, ISSN 2352-2208, http://math.andrej.com/wp-content/uploads/2012/03/eff.pdf

3 Ben Lippmeier. 2009. Witnessing Purity, Constancy and Mutability. In Proceedings of the 7th Asian Symposium on Programming
Languages and Systems (APLAS ‘09), Zhenjiang Hu (Ed.). Springer-Verlag, Berlin, Heidelberg, 95-110. DOI=10.1007/978-3-642-10672-
9_9 http://link.springer.com/chapter/10.1007%2F978-3-642-10672-9_9

4 Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. SIGPLAN Not. 48, 9 (September 2013), 145-158.
DOI=10.1145/2544174.2500590 https://dl.acm.org/citation.cfm?doid=2544174.2500590

5 Martin Hyland, Gordon Plotkin, John Power, Combining effects: Sum and tensor, Theoretical Computer Science, Volume 357, Issues
1–3, 25 July 2006, Pages 70-99, ISSN 0304-3975, (https://www.sciencedirect.com/science/article/pii/S0304397506002659)

6 Paul Blain Levy. 2004. Call-By-Push-Value: A Functional/Imperative Synthesis (Semantics Structures in Computation, V. 2). Kluwer
Academic Publishers, Norwell, MA, USA.

7 Plotkin, Gordon, and Matija Pretnar. “Handlers of algebraic effects.” Programming Languages and Systems. Springer Berlin Heidelberg,
2009. 80-94.

8 Pretnar, Matija. “Logic and handling of algebraic effects.” (2010).

39

https://github.com/edwinb/SDL-idris
https://github.com/edwinb/idris-demos
https://github.com/SimonJF/IdrisNet2
https://github.com/edwinb/Protocols
https://dl.acm.org/citation.cfm?doid=2544174.2500581
http://math.andrej.com/wp-content/uploads/2012/03/eff.pdf
http://link.springer.com/chapter/10.1007%2F978-3-642-10672-9_9
https://dl.acm.org/citation.cfm?doid=2544174.2500590
https://www.sciencedirect.com/science/article/pii/S0304397506002659

The Effects Tutorial, Release 0.9.19.1

40 Chapter 7. Further Reading

CHAPTER 8

Effects Summary

This appendix gives interfaces for the core effects provided by the library.

8.1 EXCEPTION

module Effect.Exception

import Effects
import System
import Control.IOExcept

EXCEPTION : Type -> EFFECT

raise : a -> Eff b [EXCEPTION a]

instance Handler (Exception a) Maybe
instance Handler (Exception a) List
instance Handler (Exception a) (Either a)
instance Handler (Exception a) (IOExcept a)
instance Show a => Handler (Exception a) IO

8.2 FILE_IO

module Effect.File

import Effects
import Control.IOExcept

FILE_IO : Type -> EFFECT

data OpenFile : Mode -> Type

open : (fname : String)
-> (m : Mode)
-> Eff Bool [FILE_IO ()]

(\res => [FILE_IO (case res of
True => OpenFile m
False => ())])

close : Eff () [FILE_IO (OpenFile m)] [FILE_IO ()]

readLine : Eff String [FILE_IO (OpenFile Read)]
writeLine : String -> Eff () [FILE_IO (OpenFile Write)]
eof : Eff Bool [FILE_IO (OpenFile Read)]

41

The Effects Tutorial, Release 0.9.19.1

instance Handler FileIO IO

8.3 RND

module Effect.Random

import Effects
import Data.Vect
import Data.Fin

RND : EFFECT

srand : Integer -> Eff m () [RND]
rndInt : Integer -> Integer -> Eff m Integer [RND]
rndFin : (k : Nat) -> Eff m (Fin (S k)) [RND]

instance Handler Random m

8.4 SELECT

module Effect.Select

import Effects

SELECT : EFFECT

select : List a -> Eff m a [SELECT]

instance Handler Selection Maybe
instance Handler Selection List

8.5 STATE

module Effect.State

import Effects

STATE : Type -> EFFECT

get : Eff m x [STATE x]
put : x -> Eff m () [STATE x]
putM : y -> Eff m () [STATE x] [STATE y]
update : (x -> x) -> Eff m () [STATE x]

instance Handler State m

8.6 STDIO

module Effect.StdIO

import Effects
import Control.IOExcept

42 Chapter 8. Effects Summary

The Effects Tutorial, Release 0.9.19.1

STDIO : EFFECT

putChar : Handler StdIO m => Char -> Eff m () [STDIO]
putStr : Handler StdIO m => String -> Eff m () [STDIO]
putStrLn : Handler StdIO m => String -> Eff m () [STDIO]

getStr : Handler StdIO m => Eff m String [STDIO]
getChar : Handler StdIO m => Eff m Char [STDIO]

instance Handler StdIO IO
instance Handler StdIO (IOExcept a)

8.7 SYSTEM

module Effect.System

import Effects
import System
import Control.IOExcept

SYSTEM : EFFECT

getArgs : Handler System e => Eff e (List String) [SYSTEM]
time : Handler System e => Eff e Int [SYSTEM]
getEnv : Handler System e => String -> Eff e (Maybe String) [SYSTEM]

instance Handler System IO
instance Handler System (IOExcept a)

8.7. SYSTEM 43

	Introduction
	Hello world
	Outline

	State
	First attempt
	Introducing Effects
	Effects and Resources
	Labelled Effects
	!-notation
	The Type Eff

	Simple Effects
	Console I/O
	Exceptions
	Random Numbers
	Non-determinism
	vadd revisited
	Example: An Expression Calculator

	Dependent Effects
	Dependent States
	Result-dependent Effects
	File Management
	Pattern-matching bind

	Creating New Effects
	State
	Console I/O
	Exceptions
	Non-determinism
	File Management

	Example: A “Mystery Word” Guessing Game
	Step 1: Game State
	Step 2: Game Rules
	Step 3: Implement Rules
	Step 4: Implement Interface
	Discussion

	Further Reading
	Effects Summary
	EXCEPTION
	FILE_IO
	RND
	SELECT
	STATE
	STDIO
	SYSTEM

