
Idris Tutorial Series
Release 0.11

The Idris Community

May 02, 2016

Contents

1 Type Providers in Idris 3

2 The Interactive Theorem Prover 7

i

ii

Idris Tutorial Series, Release 0.11

Tutorials submitted by community members.

Note: The documentation for Idris has been published under the Creative Commons CC0 License. As such to
the extent possible under law, The Idris Community has waived all copyright and related or neighboring rights to
Documentation for Idris.

More information concerning the CC0 can be found online at: http://creativecommons.org/publicdomain/zero/1.0/

Contents 1

http://creativecommons.org/publicdomain/zero/1.0/

Idris Tutorial Series, Release 0.11

2 Contents

CHAPTER 1

Type Providers in Idris

Type providers in Idris are simple enough, but there are a few caveats to using them that it would be worthwhile to
go through the basic steps. We also go over foreign functions, because these will often be used with type providers.

1.1 The use case

First, let’s talk about why we might want type providers. There are a number of reasons to use them and there
are other examples available around the net, but in this tutorial we’ll be using them to port C’s struct stat to
Idris.

Why do we need type providers? Well, Idris’s FFI needs to know the types of the things it passes to and from C,
but the fields of a struct stat are implementation-dependent types that cannot be relied upon. We don’t just
want to hard-code these types into our program... so we’ll use a type provider to find them at compile time!

1.2 A simple example

First, let’s go over a basic usage of type providers, because foreign functions can be confusing but it’s important
to remember that providers themselves are simple.

A type provider is simply an IO action that returns a value of this type:

data Provider a = Provide a | Error String

Looks familiar? Provider is just Either a String, given a slightly more descriptive name.

Remember though, type providers we use in our program must be IO actions. Let’s write a simple one now:

module Provider
-- Asks nicely for the user to supply the size of C's size_t type on this
-- machine
getSizeT : IO (Provider Int)
getSizeT = do
putStrLn "I'm sorry, I don't know how big size_t is. Can you tell me, in bytes?"
resp <- getLine
case readInt resp of

Just sizeTSize => return (Provide sizeTSize)
Nothing => return (Error "I'm sorry, I don't understand.")

-- the readInt function is left as an exercise

We assume that whoever’s compiling the library knows the size of size_t, so we’ll just ask them! (Don’t
worry, we’ll get it ourselves later.) Then, if their response can be converted to an integer, we present Provide
sizeTSize as the result of our IO action; or if it can’t, we signal a failure. (This will then become a compile-time
error.)

Now we can use this IO action as a type provider:

3

http://www.itu.dk/people/drc/pubs/dependent-type-providers.pdf

Idris Tutorial Series, Release 0.11

module Main
-- to gain access to the IO action we're using as a provider
import Provider

-- TypeProviders is an extension, so we'll enable it
%language TypeProviders

-- And finally, use the provider!
-- Note that the parentheses are mandatory.
%provide (sizeTSize : Int) with getSizeT

-- From now on it's just a normal program where `sizeTSize` is available
-- as a top-level constant
main : IO ()
main = do

putStr "Look! I figured out how big size_t is! It's "
putStr (show sizeTSize)
putStr " bytes!"

Yay! We... asked the user something at compile time? That’s not very good, actually. Our library is going to be
difficult to compile! This is hardly a step up from having them edit in the size of size_t themselves!

Don’t worry, there’s a better way.

1.3 Foreign Functions

It’s actually pretty easy to write a C function that figures out the size of size_t:

int sizeof_size_t() { return sizeof(size_t); }

(Why an int and not a size_t? The FFI needs to know how to receive the return value of this function and
translate it into an Idris value. If we knew how to do this for values of C type size_t, we wouldn’t need to write
this function at all! If we really wanted to be safe from overflow, we could use an array of multiple integers, but
the SIZE of size_t is never going to be a 65535 byte integer.)

So now we can get the size of size_t as long as we’re in C code. We’d like to be able to use this from Idris. Can
we do this? It turns out we can.

1.3.1 foreign

With foreign, we can turn a C function into an IO action. It works like this:

getSizeT : IO Int
getSizeT = foreign FFI_C "sizeof_size_t" (IO Int)

Pretty simple. foreign takes a specification of what function it needs to call and that function’s return type.

1.3.2 Running foreign functions

This is all well and good for writing code that will typecheck. To actually run the code, we’ll need to do just a bit
more work. Exactly what we need to do depends on whether we want to interpret or compile our code.

1.3.3 In the interpreter

If we want to call our foreign functions from interpreted code (such as the REPL or a type provider), we need
to dynamically link a library containing the symbols we need. This is pretty easy to do with the %dynamic
directive:

4 Chapter 1. Type Providers in Idris

Idris Tutorial Series, Release 0.11

%dynamic "./filename.so"

Note that the leading ”./” is important: currently, the string you provide is interpreted as by dlopen(), which
on Unix does not search in the current directory by default. If you use the ”./”, the library will be searched for
in the directory from which you run idris (not the location of the file you’re running!). Of course, if you’re using
functions from an installed library rather than something you wrote yourself, the ”./” is not necessary.

1.3.4 In an executable

If we want to run our code from an executable, we can statically link instead. We’ll use the %include and
%link directives:

%include C "filename.h"
%link C "filename.o"

Note the extra argument to the directive! We specify that we’re linking a C header and library. Also, unlike
%dynamic, these directives search in the current directory by default. (That is, the directory from which we run
idris.)

1.4 Putting it all together

So, at the beginning of this article I said we’d use type providers to port struct stat to Idris. The relevant
part is just translating all the mysterious typedef’d C types into Idris types, and that’s what we’ll do here.

First, let’s write a C file containing functions that we’ll bind to.

/* stattypes.c */
#include <sys/stat.h>

int sizeof_dev_t() { return sizeof(dev_t); }
int sizeof_ino_t() { return sizeof(ino_t); }
/* lots more functions like this */

Next, an Idris file to define our providers:

-- Providers.idr
module Providers

%dynamic "./stattypes.so"

sizeOfDevT : IO Int
sizeOfDevT = foreign FFI_C "sizeof_dev_t" (IO Int)
{- lots of similar functions -}

-- Indicates how many bits are used to represent various system
-- stat types.
data BitWidth = B8 | B16 | B32 | B64

instance Show BitWidth where
show B8 = "8 bits"
show B16 = "16 bits"
show B32 = "32 bits"
show B64 = "64 bits"

-- Now we have an integer, but we want a Provider BitWidth.
-- Since our sizeOf* functions are ordinary IO actions, we
-- can just map over them.
bytesToType : Int -> Provider BitWidth
bytesToType 1 = Provide B8 -- "8 bit value"
bytesToType 2 = Provide B16

1.4. Putting it all together 5

Idris Tutorial Series, Release 0.11

bytesToType 4 = Provide B32
bytesToType 8 = Provide B64
bytesToType _ = Error "Unrecognised integral type."

getDevT : IO (Provider BitWidth)
getDevT = map bytesToType sizeOfDevT
{- lots of similar functions -}

Finally, we’ll write one more idris file where we use the type providers:

-- Main.idr
module Main
import Providers
%language TypeProviders
%provide (DevTBitWidth : BitWidth) with getDevT

-- We can now use DevTBitWidth in our program!
main : IO ()
main = putStrLn $ "size of dev_t: " ++ show DevTBitWidth

6 Chapter 1. Type Providers in Idris

CHAPTER 2

The Interactive Theorem Prover

This short guide contributed by a community member illustrates how to prove associativity of addition on Nat
using the interactive theorem prover.

First we define a module Foo.idr

module Foo

plusAssoc : plus n (plus m o) = plus (plus n m) o
plusAssoc = ?rhs

We wish to perform induction on n. First we load the file into the Idris REPL as follows:

$ idris Foo.idr

We will be given the following prompt, in future releases the version string will differ:
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 0.9.18.1

/ // // / / / (__) http://www.idris-lang.org/
/___/__,_/_/ /_/____/ Type :? for help

Idris is free software with ABSOLUTELY NO WARRANTY.
For details type :warranty.
Type checking ./Foo.idr
Metavariables: Foo.rhs

*Foo>

2.1 Explore the Context

We start the interactive session by asking Idris to prove the hole rhs using the command :p rhs. Idris by
default will show us the initial context. This looks as follows:

*Foo> :p rhs
---------- Goal: ----------
{ hole 0 }:
(n : Nat) ->
(m : Nat) ->
(o : Nat) ->
plus n (plus m o) = plus (plus n m) o

2.2 Application of Intros

We first apply the intros tactic:

7

Idris Tutorial Series, Release 0.11

-Foo.rhs> intros
---------- Other goals: ----------
{ hole 2 }
{ hole 1 }
{ hole 0 }
---------- Assumptions: ----------
n : Nat
m : Nat
o : Nat

---------- Goal: ----------
{ hole 3 }:
plus n (plus m o) = plus (plus n m) o

2.3 Induction on n

Then apply induction on to n:

-Foo.rhs> induction n
---------- Other goals: ----------
elim_S0
{ hole 2 }
{ hole 1 }
{ hole 0 }
---------- Assumptions: ----------
n : Nat
m : Nat
o : Nat

---------- Goal: ----------
elim_Z0:
plus Z (plus m o) = plus (plus Z m) o

2.4 Compute

-Foo.rhs> compute
---------- Other goals: ----------
elim_S0
{ hole 2 }
{ hole 1 }
{ hole 0 }
---------- Assumptions: ----------
n : Nat
m : Nat
o : Nat

---------- Goal: ----------
elim_Z0:
plus m o = plus m o

2.5 Trivial

-Foo.rhs> trivial
---------- Other goals: ----------
{ hole 2 }
{ hole 1 }
{ hole 0 }
---------- Assumptions: ----------

8 Chapter 2. The Interactive Theorem Prover

Idris Tutorial Series, Release 0.11

n : Nat
m : Nat
o : Nat

---------- Goal: ----------
elim_S0:
(n__0 : Nat) ->
(plus n__0 (plus m o) = plus (plus n__0 m) o) ->
plus (S n__0) (plus m o) = plus (plus (S n__0) m) o

2.6 Intros

-Foo.rhs> intros
---------- Other goals: ----------
{ hole 4 }
elim_S0
{ hole 2 }
{ hole 1 }
{ hole 0 }
---------- Assumptions: ----------
n : Nat
m : Nat
o : Nat
n__0 : Nat
ihn__0 : plus n__0 (plus m o) = plus (plus n__0 m) o

---------- Goal: ----------
{ hole 5 }:
plus (S n__0) (plus m o) = plus (plus (S n__0) m) o

2.7 Compute

-Foo.rhs> compute
---------- Other goals: ----------
{ hole 4 }
elim_S0
{ hole 2 }
{ hole 1 }
{ hole 0 }
---------- Assumptions: ----------
n : Nat
m : Nat
o : Nat
n__0 : Nat
ihn__0 : plus n__0 (plus m o) = plus (plus n__0 m) o

---------- Goal: ----------
{ hole 5 }:
S (plus n__0 (plus m o)) = S (plus (plus n__0 m) o)

2.8 Rewrite

-Foo.rhs> rewrite ihn__0
---------- Other goals: ----------
{ hole 5 }
{ hole 4 }
elim_S0
{ hole 2 }

2.6. Intros 9

Idris Tutorial Series, Release 0.11

{ hole 1 }
{ hole 0 }
---------- Assumptions: ----------
n : Nat
m : Nat
o : Nat
n__0 : Nat
ihn__0 : plus n__0 (plus m o) = plus (plus n__0 m) o

---------- Goal: ----------
{ hole 6 }:
S (plus n__0 (plus m o)) = S (plus n__0 (plus m o))

2.9 Trivial

-Foo.rhs> trivial
rhs: No more goals.
-Foo.rhs> qed
Proof completed!
Foo.rhs = proof

intros
induction n
compute
trivial
intros
compute
rewrite ihn__0
trivial

Two goals were created: one for Z and one for S. Here we have proven associativity, and assembled a tactic based
proof script. This proof script can be added to Foo.idr.

10 Chapter 2. The Interactive Theorem Prover

	Type Providers in Idris
	The Interactive Theorem Prover

